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Structure of metastable states in the Hopfield model 

E Gardner 
Department of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK 

Received 30 May 1986 

Abstract. An upper bound for the number of metastable states in the Hopfield model is 
calculated as a function of the Hamming fraction from an input pattern. For all finite 
values of a, the ratio of number of patterns to nodes, the Hamming fraction from the input 
pattern to the nearest metastable state is finite. When a C 0.1 13, the bound also implies 
that there is a gap between a set of states close to the input pattern and another set centred 
around the Hamming fraction 0.5 from it. 

The Hopfield model (Hopfield 1982) is a pattern recognition model which stores a set 
of n input vectors as N bit numbers. The number of patterns which can be stored 
assuming single spin-flip dynamics behaves as N /2  In N for large N (Weisbuch and 
Fogelman Soulie 1985, Bruce et a1 1986). This means that for finite values of a = n/ N 
no input pattern will be perfectly recalled. However, a mean-field analysis of the 
thermodynamics of the model (Amit et al 1985) shows that for sufficiently low tem- 
perature and for a less than a critical value a,, there exists a metastable state close 
to the input pattern which is perfectly recalled and that at a lower value of a, aI , this 
state has a lower energy than that of the spin glass state (which exists for all a and 
is uncorrelated with the input pattern) and so becomes a ground state. At zero 
temperature, the replica symmetric ansatz gives a, = 0.138 and aI = 0.052. Although 
this ansatz is known to be incorrect at zero temperature, replica breaking effects in a, 
and a1 are expected to be small. For a < a, the model is expected to have associative 
memory and so be useful as a pattern recognition model: iteration from a state within 
the basin of attraction of the correlated state will increase its correlation with the input 
vector. 

However, there are also other metastable states which do not appear in the thermo- 
dynamic calculation but which can be important in the dynamics. The number of such 
states in a spin glass is exponentially large in N (Bray and Moore 1980,1981). Therefore 
in the Hopfield model one would expect that, in addition to the spin glass state at 
Hamming distance 0.5 from the input pattern, there are other non-equilibrium states 
at distances centred around this value. Similarly there should be another exponentially 
large set of states with distances approximately centred around the correlated state 
which appears in the thermodynamic calculation. 

Non-equilibrium states are relevant, for example, to the results of iteration from 
an input pattern. If one assumes the existence of only two thermodynamic states, one 
correlated with the input pattern and one at a distance 0.5 from it, then assuming one 
iterates to the correlated states for a < a,, the final Hamming distance would have a 
sharp jump at a = a, from the correlated state value 0.015 to the uncorrelated value 
0.5. However, numerical results (Amit et al1986, Bruce et al1986) using single spin-flip 
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dynamics show that the jump is not sharp. There are large finite-size effects which 
persist up to values of a much larger than a,. The simplest possiblity is that these 
effects can be analysed as a first-order phase transition. For sufficiently large values 
of N, there is a clear gap between two bands of possible final states; there is a relative 
probability -eNF'"' of iteration to a non-equilibrium state in the correlated band 
relative to the uncorrelated band and the phase transition is defined to be at the value 
a. of a where F ( a o )  = 0. Only in the limit N + CO does the jump in the Hamming 
distance at a. become sharp. It is possible that a. is not equal to a,; it could be at 
a lower value if the iteration allows one to jump over the nearest band of states or it 
could be at a higher value if the correlated band of non-equilibrium states exists and 
has higher weight than the uncorrelated band for a > a,. Using the above dynamics, 
a. turns out to be -0.145, just above the replica symmetric prediction and so the 
combination of replica breaking and dynamical effects seems to be small. The final 
Hamming distances are equal to their remanent values (Kinzel 1985) corresponding 
to the large entropy of non-equilibrium states. For the spin glass state the final value 
is less than 0.5 (Amit et a1 1986). For the correlated band, the effect is too small to 
be seen numerically at least for the above single spin-flip dynamics. Another possiblity 
is that there are values of a for which the probability of iterating to each band remains 
finite as N + CO; it could be that sample to sample and pattern to pattern fluctuations 
in the final Hamming distance remain non-zero in this limit. 

In this letter we will calculate the expectation of the number of metastable states 
as a function of the Hamming distance Ng from an input pattern. This is an upper 
bound for the typical number of such states. Since, for any particular realisation of 
the other input patterns, the number of metastable states, X ( N ,  g )  behaves as eNS'g' 
for large N, the quantity log X( N, g )  is extensive and so should be self-averaging. 
This means that the value of X(N,  g )  for a given realisation is (for large N )  almost 
always equal to eN'S'*" where ( ) represents an average over all possible realisations; 
other values of X( N, g) occur with probabilities which are exponentially small in N. 
Therefore, by convexity of the distribution of S(g) ,  the expectation of X (  N, g ) ,  (eNstg)) 
is an upper bound for this typical value. 

The calculation of (eNs(g)) will be done for the (1, -1) model although it can also 
be generalised to other dynamics. This model is defined in terms of Ising spins Si 
which take the values +1 or -1 at each site i, i = 1, . . . , N. A spin is given the value 
+1 if 

and the value -1 otherwise. This dynamics can be done either in series or in parallel. 
The values of Tj on each link are given by the storage prescription (Hopfield 1982) 

where the {Sl, i = 1,. . . , N }  r = 1,. . . , n are the patterns one wants to store. 
If a state, {Si,  i = 1, . . , N } ,  at distance Ng from an input vector, r, is to be perfectly 

recalled, it must be a stable state of the dynamics defined by (1). This means that the 
quantity 

Rr= Si TjSj 
j # i  

must be positive on each site i. 

(3) 



Letter to the Editor L1049 

Separation of the term coming from the input vector r from the interference term 
coming from the other vectors gives 

for the Ng values of i for which Sl= Si 1 
N j + i  s # r  

1 - 2 g + -  s;s;sisj 
(4) RI = 

1 
[ - 1 + 2 g + -  c S f S f S i S j  otherwise. 

N j t i  s f r  

The expectation, over all possible realisations of the other input patterns, 
(eNS(g)) = eNF(g)  

can be obtained using the integral representation for the 8 functions 
W 

e ( 7 )  = * J' dx exp[ix(p - T)] 
0 2.rr -a2 

as a saddle point over two parameters U and b:  
1 (1-b)'  

b+ilnu--+- 
2 2a 

where 
1 - 2 g - b a  

Jacr 
1 - 2 g +  ba 
6 .  

t =  

U =  

(7) 

The mean-field equations for a and b can be solved numerically and the results 
for a =0.1,  0.113 and 0.2 are plotted in figures l ( u ) ,  ( b )  and ( c ) ,  respectively. If 
F(g,  a) is negative, then since the typical value of X (  N, g )  is bounded above by zero 
in the thermodynamic limit, there are no states in this limit at these values of g.  

For g = 0, F(g,  a) is negative for all finite values of a and so the probability that 
an input vector is perfectly stored vanishes in the thermodynamic limit. At g = 0, the 
typical value of X (  N, g )  is equal to its expectation and expansion of F(0 ,  a) around 
a = O  allows one to prove that the storage capacity no of the network behaves as 
N / 2  In N (3ruce et al 1986). 

The Hamming fraction go(a)  from the input vector to the nearest metastable state 
is finite for all values of a since F(g, a) is negative in a finite region around g = 0. 
For small a, expansion around a = O  gives 

For values of a < 0.1 13 there is a narrow band of values of g > go( a) for which 
F(g, a) is positive and this band contains the correlated state found in the thermo- 
dynamic calculations. The width of the band A g ( a )  behaves as 
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- 10’ 1 

-10.’ 1 
Figure 1. The function F(g) for (a)  a =0.1 where the height of the first peak is 2.5 x lo-’, 
( b )  a =0.113 where the height of the first peak is 1 .1  x lo-* and (c )  a = 0.2. The lower 
curve shows S(g) if the states were distributed according to phase space. 
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for small a and the maximum value of F in this region behaves as 

7 
4 a  
-- 

near a =O.  
For values of a ~ 0 . 1 1 3  there is a gap between this band of states and the more 

distant band of metastable states centred around g = 0.5 which exist for all values of 
a. The bound is, however, not strong enough to prove the existence of a gap for values 
of Q as large as a,. The second band is much broader than would be expected if the 
states were distributed according to phase space. The bound is therefore consistent 
with the existence for all values of a of additional states with macroscopic correlations 
with the input vector. The existence of these states would explain the larger remanent 
magnetisation obtained in numerical simulations by iterating from an input vector 
relative to that obtained by iterating from a random vector (Toulouse et a1 1986). 

For g = 0.5 the bound should give the exact number of metastables states (Bray 
and Moore 1980). The total number of metastable states is given by this value since 
g = 0.5 is the saddle point in the integral over g:  

m = j  dgX(N,g) .  (11) 

For large a, the result of Bray and Moore (1980) for the Sherrington-Kirkpatrick 
model is recovered and for small a one has 

X(  N) = eN[$a(ln(2/ pa) - 1) + O( a')]. (12) 

it is also possible to include the energy 

in the above calculations. The expectation of the number of metastable states at 
distance Ng and of the energy per site E, (X(N, g, E ) ) ,  is given by 

For finite values of g, the number of such states decreases from the value at the saddle 
point over E, at Eo(g, a), which gives (N( N, g)) and the gap between the two bands 
of metastable states widens. So, as E decreases the maximum value of a at which one 
can prove the existence of a gap increases. Since the maximum of X (N, g, E )  is again 
at g = 0.5, there is an upper bound for the total number of states as a function of energy 

( K ( N ,  E ) )  = eNG(€)  

= (X (  N, 0.5, E ) )  (15) 

where 
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and GO(&) is given by the extremum over the variable x of 

It would be interesting to repeat these calculations using replicas. This would allow 
one to calculate the typical value of N ( N ,  g, E )  = exp(N(S(g, E ) ) ) .  For g = O S  the 
replica symmetric solution is identical to the above solution and the replica symmetric 
solution should remain correct at least for a finite region around E = E o ( o . 5 ,  a) and 
g = 0.5. However, replica symmetry breaking will probably be important for the lower 
energy states (Bray and Moore 1981). In this case, the replica symmetric solution 
would provide a better upper bound for X(N, g, E ) .  Dynamical effects and non- 
equilibrium states should also be important for other properties of neural networks. 
Associative memory properties, in particular, do depend on the kind of dynamics 
which is used and can be studied using similar methods to those described here (Derrida 
et a1 1986). 

I would like to thank B Derrida and G Toulouse for useful comments. Financial 
support was from the Science and Engineering Research Council, UK. 
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